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Abstract

Concepts in spaces (=∞-groupoids) categorify verbatim to ω-categories once you have the
correct definitions. We focus on defining n-truncated functors and showing that 1. for groupoids
this is the same old topological notion, 2. the n-truncated categories are the n-categories.
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We take the ∞-category of spaces S as a primitive notion.

1 Globes and spheres

The n-dimensional globe is the strict n-category Θn with two objects, two parallel k-morphisms
for 0 < k < n, and a single n-morphism. Write I for the 1d disk.

Θ0 = ∗ , Θ1 = ∗ ∗ Θ2 = ∗ ∗ . . .

The boundary of the n-globe is given by removing the top dimensional morphism.

∂Θ0 = ∅ , ∂Θ1 = ∗ ∗ ∂Θ2 = ∗ ∗ . . .
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The boundary of the next globe can be obtained from the previous ones by a pushout:

∂Θd Θd

Θd ∂Θd+1

y

In contrast, the directed n-sphere is given by the following cofiber sequence:

∂Θd Θd

∗ ~Sn

p

The reason why ~Sn 6= ∂Θd is that Θn 6= ∗, unlike for spaces / ∞-groupoids. In fact, the map
Θn → ∗ is (≥ 0)-faithful, but (≤ 0)-full.

Likewise, ~Sn doesn’t embed non-trivially in Θd+1|: it does so in Jd+1, the walking (d + 1)-
equivalence.

More elaborate constructions of homotopy theory categorify likewise, but in general there will be
two options given by the choice of ~Sn vs ∂Θn. For instance, loop spaces categorify to loop categories,
i.e. ΩC := Catω(~S1, C), and Ω-spectra to categorical spectra, i.e. a sequence C• of ω-categories with
C• ∼= ΩC•+1.

A more ellaborate categorification is that of suspension; one way to define it is as a left adjoint
Σ a Ω; it has been shown by Masuda that ΣC ∼= ~S1 ∧ C, where ∧ is obtained from the Gray product
(which categorifies Cartesian products).

A good reason to jump to Catω instead of containing yourself with n-categories is that these
constructions are much cleaner as you don’t have to keep track of several connectivity conditions.
For instance we will push the following slogan throughout this note:

-n-truncated spaces are to spaces, as n-categories are to ω-categories-

In particular, Σ a Ω respectively raise and decrease connectivity - in both senses! If you try
to reason this with Catn, you have to keep track of this raising and decreasing. So we work with
Catω.

2 From weak to orthogonal factorization systems

We denote a collection of morphisms in C by S ⊆ C. This is not ambiguous as we don’t have a
concept of subcategory.

Definition 2.1. A weak factorization system on C is a pair (L,R) of collections of morphisms
L,R ⊆ C such that

• every morphism f ∈ C factors as f = r ◦ l, where l ∈ L and r ∈ R;

2



• R = rlp(L);

• L = llp(R).

Locally presentable nonsense guarantees the existence of a weak factorization system (L, rlp(S))
for any S ⊆ S. The following is the description of L:

Definition 2.2. A morphism A → X is an S-cell complex if it is obtained by a transfinite
composition of pushouts of pushouts with morphisms in S.

Denote the collection of S-cell complexes by cell(S).

Proposition 2.3. The pair (cell(S), rlp(S)) is a weak factorization system.

Proof. sorry

The word “weak” contrasts with the following definitoin. There, the word “orthogonal” was
historically added for clarity as w.f.s. gained importance due to model categories.

Definition 2.4. An orthogonal factorization system is a weak factorization whose factorizations
are unique, or equivalently whose lifting properties are unique.

Our next goal is to upgrade (cell(S), rlp(S)) to an orthogonal factorization system whose right
class is orlp(S).

Definition 2.5. The codiagonal of a morphism f ∈ C is the following morphism δf ∈ C:

x y

y y t
x
y

b

f

f

δf

A collection of morphisms S ⊆ C is codiagonal complete if S is closed under forming codiagonals.

Proposition 2.6. A weak factorization system (L,R) is orthogonal iff L is codiagonal complete.

Proof. sorry

The codiagonal completion of a collection of morphisms S ⊆ C is the collection Ŝ ⊆ C obtained
by adjoining codiagonals.

Corollary 2.7. The pair (cell(Ŝ), orlp(S)) is an orthogonal factorization system for any S ⊆ C.

Proof. Combine Proposition 2.3 with Proposition 2.6.
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3 (n-connected, n-truncated) - spaces

Definition 3.1. A space X ∈ S∗ is n-connected [resp. n-truncated] if πk(X) = 0 for k ≤ n

[resp. k > n].

Example 3.2. Harsh words won’t solve problems, action will.

• The n-sphere is (n− 1)-connected.

• A simply connected space is 1-connected.

• Groupoids are 1-truncated.

• The Eilenberg-MacLane space BnG is (n− 1)-connected and (n− 1)-truncated.
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Let (∂D>n ↪→ D>n) [resp. (∂D≤n ↪→ D≤n)] denote the set of boundary inclusions ∂Dd ↪→ Dd

for k > n [resp. k ≤ n]. Then the following is trivial.

Proposition 3.3. A space X ∈ S∗ is n-connected [resp. n-truncated] iff X ∈ orlp(∂D>n+1 ↪→
D>n+1) [resp. X ∈ orlp(∂D≤n+1 ↪→ D≤n+1)].

Proof. The only reason why is this confusing is because the degrees, as for instance

π>n(X) = 0 ⇐⇒ orlp(S>n ↪→ D>n+1) ⇐⇒ orlp(∂D>n+1 ↪→ D>n+1),

and similarly for n-truncated spaces.

This suggests the following definition:

Definition 3.4. A map f : X → Y in S∗ is n-connected [resp. n-truncated] if f ∈ orlp(∂D≤n ↪→
D≤n) [resp. f ∈ orlp(∂D>n ↪→ D>n)].

Remark 3.5. A space is n-connected if the terminal map is (n+ 1)-connected.

By Corollary 2.7 there exists an orthogonal factorization system (L, n-truncated), where L =
cell(“D>n). The following proposition identifies L with the n-connected maps.

Proposition 3.6. The pair (n-connected,n-truncated) is an orthogonal factorization system in S.

Proof. sorry

The following is the usual textbook definition of an n-connected morphism. identification of
n-truncated maps with cell(∂D>n+1 ↪→ D>n+1) explains the following textbook definition.

Proposition 3.7. A map is n-connected iff it induces an isomorphism on πk in degree k < n+ 1
and an epimorphism in degree n+ 1.
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Proof. Lifting against ∂Dd ↪→ Dd for d < n+1 gives the isomorphisms in degree < n+1. Codiagonal
completing gives no additional lifting conditions, except for that against ∂Dn+2 � Dn+1, which
corresponds to an epimorphism in πn.

For n-truncated spaces there is no surprise:

Proposition 3.8. A map is n-truncated iff it induces isomorphisms on πk

Also note the following:

Proposition 3.9. A space X is n-connected iff X is an En-space.

Proof. sorry

Let i : S≤n ↪→ S denote the fullsubcategory on n-truncated spaces.

Proposition 3.10. i is a reflective localization

Proof. It is precisely the localization at (∂D>n ↪→ D>n).
sorry

4 (n-connected, n-truncated) - categories

Let Cat0 := S and define Catn+1 := Catn-Cat. Some abstract nonsense guarantees that there is
an inclusion functor i : Catn → Catn+1. More nonsense guarantees that i is a (composite of) left
adjoint(s); in the next section we will show that it is a reflective subcategory by finding an explicit
localizing set. Define Catω as the direct limit of the inclusions in PrR.

Recycling notation, let Θ>n [resp. Θ≤n] denote the sets of boundary inclusions of globes
∂Θk ↪→ Θk for k > n [respk ≤ n]. We apply Corollary 2.7 to obtain a factorization system in Cat∞.

Proposition 4.1. The pair

(cell( ¤�∂Θ>n ↪→ Θ>n), orlp(∂Θ>n ↪→ Θ>n))

is an orthogonal factorization system in Catω.

We then mimick the definitions for spaces:

Definition 4.2. A functor F : C → D in Catω is n-connected [resp. n-truncated] if f ∈
orlp(∂Θ≤n ↪→ Θ≤n) [resp. f ∈ orlp(∂Θ>n ↪→ Θ>n)].

Proposition 4.3. A functor is n-truncated iff it is (> n)-fully faithful.

Proof. Stare at the following diagram for long enough to conclude that the orlp against ∂Θd ↪→ Θd

is d-fully-faithfulness:
∂Θd C

Θd

∃!
.
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Taking the range d > n yields the result.

Definition 4.4. A category C ∈ Catω is n-connected [resp. n-truncated] if the terminal map is
(n+ 1)-connected [resp. (n+ 1)-truncated].

Corollary 4.5. A category is n-truncated iff it is an n-category.

Proof. The terminal map is (≥ n)-fully faithful iff the space of (≥ n)-morphisms are trivial.

Also note the relation to monoidality:

Proposition 4.6. A category C is n-connected iff it is a n-tuply monoidal (∞,∞)-category.

Proof. This is the delooping hypothesis.

Proposition 4.7. A functor F : C → D is n-connected iff it is (≤ n)-faithful and (< n)-full.

Proof. Lifting against ∂Θd ↪→ Θd for d < n gives (< n)-fully-faithfulness. Codiagonal completing
gives no additional lifting conditions, except for that against ∂Θn+1 � Θn, which corresponds to
n-faithfulness.

Question 4.8. The same abstract nonsense gives you a factorization system (L,n-connected), where
L = cell(Θ<n. Is there an alternative description of L?

The (n-connected,n-truncated)-factorization system passes to the reflective subcategories Catn ↪→
Catω via the following lemma.

Lemma 4.9. Let i : D ↪→ C : L be a reflective subcategory and consider the wfs (cell(S), rlp(S)))
defined by S ⊆ C. Then (cell(L(S)), rlp(L(S))) is a wfs in D.

Proof. The operations defining cell(S) are all colimit operations, so L commutes with cell. A
factorization system with cell(L(S)) on the left exists by Proposition 2.3, and the right class must
be rlp(L(S)) since it is defined by the left calssclass.

Corollary 4.10. In the situation of Lemma 4.9, if (cell(S), rlp(S)) is orthogonal then so is
(cell(L(S)), rlp(L(S))).

Proof. This follows from Proposition 2.6 since codiagonals are colimit operations so L preserves
them.

Let L : Catω → Catn be the left adjoint to inclusion. We will see at the end of this section
that this is a reflective localization.

Corollary 4.11. The pair

(cell(L( ¤�∂Θ>n ↪→ Θ>n)), orlp(L∂Θ>n ↪→ Θ>n))

is an orthogonal factorization system in Catn.
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The following 4 examples are obtained by applying ?? to Cat.

Example 4.12 (all,eso+ff). The orlp against

∂Θ0 ↪→ Θ0 and ∂Θ1 ↪→ Θ1

corresponds to surjectivity and fully-faithfulness, respectively. This already characterizes the right
class. 4

Example 4.13 (eso,ff). The orlp against just ∂Θ1 ↪→ Θ1 is fully-faithfulness; this already guarantees
lifts against higher cells. There is a well-known orthogonal factorization system (eso, ff) in Cat,
whence we conclude that eso = cell(∂Θ1 ↪→ Θ1). 4

Example 4.14 (eso+f,f). The globe ∂Θ2 ↪→ Θ2 is localized to ∂Θ2 � Θ1 in Cat. The orlp against
this functor corresponds to faithfulness, and with the well-known orthogonal factorization system
(eso+f, f) we conclude that (eso+f) = cell(∂Θ2 � Θ1). 4

Example 4.15 (eso+ff,all). The orlp against L(∂Θd ↪→ Θd) doesn’t do anything in Cat for
n > 3. 4

Example 4.16. ?? gives 5 interesting factorization systems in Cat2:

• (all,bieq)

• (eso,locally eso+locally ff)

• (eso+locally eso,ff)

• (eso+locally eso+f,f)

• (bieq,all)

4

Proposition 4.17. The left adjoint L : Catω → Catn is precisely the localization of n-truncated
morphisms.

Proof. It is the localization at (∂Θ>n ↪→ Θ>n). sorry

5 ((n-0.5)-connected,(n-0.5)-truncated) - categories

In the previous section we considered the orthogonal factorization systems generated by considering
all boundary inclusions ∂Θd ↪→ Θd+1. up to n, or greater than n. Orthogonality is obtained by
codiagonal completion, which corresponded to adding the projection ∂Θd+1 � Θd. We could then
consider the generating set which contains the latter but not the former (codiagonal completing it
doesn’t do anything as this is an epi).

Let Θ>n−0.5 denote (∂Θ>n ↪→ Θ>n) adjoined with the functor ∂Θn � Θn, and define Θ≤(n−0.5)

similarly.
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Definition 5.1. A functor F : C → D in Catω is (n-0.5)-connected (resp. (n-0.5)-truncated)
if f ∈ orlp(Θ≤(n−0.5)) (resp. f ∈ orlp(Θ>(n−0.5))). A category C ∈ Catω is (n-0.5)-connected
(resp. (n-0.5)-truncated) if the terminal map is (n− 0.5)-connected (resp. (n− 0.5)-truncated).

Proposition 5.2. A category C ∈ Catω is (0.5)-connected iff it is a poset.

Proof. We know by ??

Proposition 5.3. A functor is (n− 0.5)-truncated iff it is (≥ n)-full and (> n)-faithful.

Proof. sorry

Example 5.4. In Cat there exists an orthogonal factorization system whose right class is R =
(eso+ faithful). 1 A category is R-local 4

6 walking n-isomorphisms

WARNING - THIS SECTION IS SKETCHY

Definition 6.1. The walking n-isomorphism is the n-category In obtained by inverting the top
morphism in Θd. Also set I0 := Θ0.

Remark 6.2. Convince yourself that In ∈ cell(“Θ≤n).

Proposition 6.3. In+1 ∼= Θn

Proof. Contract the invertible arrow in In+1.

We will apply this identification without mention. That means that we are really in a weak
context for colimits.

Proposition 6.4. Let S ⊆ Cat1 be comprised by ∂Θ2 ↪→ Θ1 and ∂Θ1 � Θ0 ∼= I1. Then orlp(S)
consists of the pseudomonic functors, i.e. faithful, and full on isomorphisms.

Proof. Faithfulness correspond to lifts against the first functor, and unique lifts against the second
mean that that every isomorphism in the image comes from a unique isomorphism in the domain.

Example 6.5. The terminal functor Θ1 is in orlp(S). 4

Corollary 6.6. There exists a factorization system in Cat whose right class are the pseudomonic
functors.

Question 6.7. Is the right class the “pseudoepic” functors?

RLP against Θd ↪→ In indicates that the n-morphisms are invertible. For n-categories,
RLP against In → ∗ indicates that there are no non-trivial n-isomorphisms.
RLP against ~Sn ↪→ In indicates that there are no non-trivial n-automorphisms

1I don’t know what is the left class.
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Example 6.8. A category is orthogonal to Θ1 ↪→ I1 iff it is equivalent to a set. 4

Example 6.9. A functor of 1-categories is orthogonal to Θ1 ↪→ I1 iff it is conservative and
iso-faithful, i.e. iso-reflecting and faithful on isomorphisms. 4

Example 6.10. A 2-category is orthogonal to Θ2 ↪→ I2 iff it is biequivalent to a category. 4
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