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Abstract

Concepts in spaces (=oco-groupoids) categorify verbatim to w-categories once you have the
correct definitions. We focus on defining n-truncated functors and showing that 1. for groupoids

this is the same old topological notion, 2. the n-truncated categories are the n-categories.
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We take the co-category of spaces S as a primitive notion.

1 Globes and spheres

The n-dimensional globe is the strict n-category 0,, with two objects, two parallel k-morphisms

for 0 < k < n, and a single n-morphism. Write I for the 1d disk.

Op= %, O] = x —— % Oy = *
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The boundary of the n-globe is given by removing the top dimensional morphism.
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The boundary of the next globe can be obtained from the previous ones by a pushout:

004 —— o

Lo

ol —— gt

In contrast, the directed n-sphere is given by the following cofiber sequence:

00¢ —— o

| ]

« —— S

The reason why Sn # 007 is that ©,, # x, unlike for spaces / oo-groupoids. In fact, the map
O, — * is (> 0)-faithful, but (< 0)-full.

Likewise, S doesn’t embed non-trivially in ©4t1l: it does so in J%*!, the walking (d + 1)-
equivalence.

More elaborate constructions of homotopy theory categorify likewise, but in general there will be
two options given by the choice of 5™ vs 90,,. For instance, loop spaces categorify to loop categories,
ie QC:= Catw(gl, C), and Q-spectra to categorical spectra, i.e. a sequence €* of w-categories with
¢* =~ Qeetl,

A more ellaborate categorification is that of suspension; one way to define it is as a left adjoint
31 4 Q; it has been shown by Masuda that 3C = StacC , where A is obtained from the Gray product
(which categorifies Cartesian products).

A good reason to jump to Cat,, instead of containing yourself with n-categories is that these
constructions are much cleaner as you don’t have to keep track of several connectivity conditions.

For instance we will push the following slogan throughout this note:
-n-truncated spaces are to spaces, as n-categories are to w-categories-

In particular, ¥ - Q respectively raise and decrease connectivity - in both senses! If you try
to reason this with Cat,,, you have to keep track of this raising and decreasing. So we work with
Cat,,.

2 From weak to orthogonal factorization systems

We denote a collection of morphisms in C by S C C. This is not ambiguous as we don’t have a

concept of subcategory.

Definition 2.1. A weak factorization system on C is a pair (£, R) of collections of morphisms
L, R C C such that

e every morphism f € C factors as f =rol, wherel € £ and r € R;



e R =rlp(L);
o £ =1Ip(R).

Locally presentable nonsense guarantees the existence of a weak factorization system (£, rlp(S))

for any S C S. The following is the description of L:

Definition 2.2. A morphism A — X is an S-cell complex if it is obtained by a transfinite

composition of pushouts of pushouts with morphisms in S.
Denote the collection of S-cell complexes by cell(S).
Proposition 2.3. The pair (cell(S),rlp(S)) is a weak factorization system.
Proof. sorry O

The word “weak” contrasts with the following definitoin. There, the word “orthogonal” was

historically added for clarity as w.f.s. gained importance due to model categories.

Definition 2.4. An orthogonal factorization system is a weak factorization whose factorizations

are unique, or equivalently whose lifting properties are unique.

Our next goal is to upgrade (cell(S), rlp(S)) to an orthogonal factorization system whose right
class is orlp(.5).

Definition 2.5. The codiagonal of a morphism f € C is the following morphism d; € C:

Lt
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A collection of morphisms S C C is codiagonal complete if S is closed under forming codiagonals.
Proposition 2.6. A weak factorization system (L, R) is orthogonal iff L is codiagonal complete.
Proof. sorry O

The codiagonal completion of a collection of morphisms S C C is the collection S C C obtained
by adjoining codiagonals.

~

Corollary 2.7. The pair (cell(S),orlp(S)) is an orthogonal factorization system for any S C C.

Proof. Combine Proposition 2.3 with Proposition 2.6. O



3 (n-connected, n-truncated) - spaces

Definition 3.1. A space X € S, is n-connected [resp. n-truncated] if 7;(X) = 0 for £ < n
[resp. k > n].

Example 3.2.

The n-sphere is (n — 1)-connected.

A simply connected space is 1-connected.

Groupoids are 1-truncated.

The Eilenberg-MacLane space B"G is (n — 1)-connected and (n — 1)-truncated.
A

Let (OD>™ < D>") [resp. (0D=" < D=")] denote the set of boundary inclusions D¢ — D4
for k > n [resp. k < n|. Then the following is trivial.

Proposition 3.3. A space X € S, is n-connected [resp. n-truncated] iff X € orlp(D>"F! —
D> fresp. X € orlp(OD="T! — psntl)]

Proof. The only reason why is this confusing is because the degrees, as for instance
Ton(X) =0 <= orlp(S”" < D”") <= orlp(dD>" ' — D",

and similarly for n-truncated spaces. O
This suggests the following definition:

Definition 3.4. A map f : X — Y in S, is n-connected [resp. n-truncated] if f € orlp(OD=" —
D=") [resp. f € orlp(OD>" — D>")].

Remark 3.5. A space is n-connected if the terminal map is (n + 1)-connected. ()

By Corollary 2.7 there exists an orthogonal factorization system (£, n-truncated), where £ =

cell(ZA)>"). The following proposition identifies £ with the n-connected maps.
Proposition 3.6. The pair (n-connected, n-truncated) is an orthogonal factorization system in S.
Proof. sorry O

The following is the usual textbook definition of an n-connected morphism. identification of
n-truncated maps with cell(@D>"+1 — D>"+1) explains the following textbook definition.

Proposition 3.7. A map is n-connected iff it induces an isomorphism on . in degree k < n + 1

and an epimorphism in degree n + 1.



Proof. Lifting against 9D% < D® for d < n+1 gives the isomorphisms in degree < n+1. Codiagonal
completing gives no additional lifting conditions, except for that against 9D"+? — D"+l which

corresponds to an epimorphism in 7. ]

For n-truncated spaces there is no surprise:

Proposition 3.8. A map is n-truncated iff it induces isomorphisms on
Also note the following:

Proposition 3.9. A space X is n-connected iff X is an E™-space.

Proof. sorry O

Let i : SS" < S denote the fullsubcategory on n-truncated spaces.
Proposition 3.10. i is a reflective localization

Proof. Tt is precisely the localization at (0D~™ < D>").
sorry O

4 (n-connected, n-truncated) - categories

Let Caty := S and define Cat,,; := Cat,-Cat. Some abstract nonsense guarantees that there is
an inclusion functor i : Cat,, — Cat, 1. More nonsense guarantees that 7 is a (composite of) left
adjoint(s); in the next section we will show that it is a reflective subcategory by finding an explicit
localizing set. Define Cat,, as the direct limit of the inclusions in Pr’.

Recycling notation, let ©>" [resp. ©="] denote the sets of boundary inclusions of globes

00F — ©F for k > n [respk < n]. We apply Corollary 2.7 to obtain a factorization system in Cate.

Proposition 4.1. The pair
(cell(90>7 — ©1), orlp(90™" <5 ©7™))

s an orthogonal factorization system in Cat,,.
We then mimick the definitions for spaces:

Definition 4.2. A functor F' : C — D in Cat, is n-connected [resp. n-truncated] if f €
orlp(9O=" < O=") [resp. f € orlp(90>" — ©>")].

Proposition 4.3. A functor is n-truncated iff it is (> n)-fully faithful.

Proof. Stare at the following diagram for long enough to conclude that the orlp against 900% < ©¢

is d-fully-faithfulness:
004 —— ¢
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Taking the range d > n yields the result. O

Definition 4.4. A category C € Cat,, is n-connected [resp. n-truncated] if the terminal map is

(n + 1)-connected [resp. (n + 1)-truncated].

Corollary 4.5. A category is n-truncated iff it is an n-category.

Proof. The terminal map is (> n)-fully faithful iff the space of (> n)-morphisms are trivial. O
Also note the relation to monoidality:

Proposition 4.6. A category C is n-connected iff it is a n-tuply monoidal (0o, 00)-category.

Proof. This is the delooping hypothesis. O

Proposition 4.7. A functor F': C — D is n-connected iff it is (< n)-faithful and (< n)-full.

Proof. Lifting against 00% < ©¢ for d < n gives (< n)-fully-faithfulness. Codiagonal completing
gives no additional lifting conditions, except for that against 90" +! — ©", which corresponds to
n-faithfulness. O

Question 4.8. The same abstract nonsense gives you a factorization system (L, n-connected), where

L = cell(O<". Is there an alternative description of L?

The (n-connected, n-truncated)-factorization system passes to the reflective subcategories Cat,, —

Cat,, via the following lemma.

Lemma 4.9. Let i : D < C : L be a reflective subcategory and consider the wfs (cell(S),rlp(S)))
defined by S C C. Then (cell(L(S5)),rlp(L(S))) is a wfs in D.

Proof. The operations defining cell(S) are all colimit operations, so L commutes with cell. A
factorization system with cell(L(,S)) on the left exists by Proposition 2.3, and the right class must
be rlp(L(S)) since it is defined by the left calssclass. O

Corollary 4.10. In the situation of Lemma 4.9, if (cell(S),rlp(S)) is orthogonal then so is
(cell(L(S5)), rIp(L(S)))-

Proof. This follows from Proposition 2.6 since codiagonals are colimit operations so L preserves
them. 0

Let L : Cat,, — Cat,, be the left adjoint to inclusion. We will see at the end of this section

that this is a reflective localization.

Corollary 4.11. The pair

(cell(L(0©>™ — ©>1)), orlp(LOO~™ — ©7™))

s an orthogonal factorization system in Cat,,.



The following 4 examples are obtained by applying 77 to Cat.

Example 4.12 (all,eso+ff). The orlp against
00" — 0% and 06!~ O'
corresponds to surjectivity and fully-faithfulness, respectively. This already characterizes the right

class. AN

Example 4.13 (eso,ff). The orlp against just 90! < ©! is fully-faithfulness; this already guarantees
lifts against higher cells. There is a well-known orthogonal factorization system (eso, f f) in Cat,
whence we conclude that eso = cell(90! — O1). A

Example 4.14 (eso+{f,f). The globe 002 — O3 is localized to 902 — O in Cat. The orlp against
this functor corresponds to faithfulness, and with the well-known orthogonal factorization system
(eso+f, f) we conclude that (eso+f) = cell(002 — ©1). A

Example 4.15 (eso+ff,all). The orlp against L(00¢ — ©%) doesn’t do anything in Cat for
n > 3. A

Example 4.16. 77 gives 5 interesting factorization systems in Caty:

(all,bieq)

(eso,locally eso+locally ff)

(eso+locally eso,ff)

(eso+locally eso+f,f)

(bieq,all)
A

Proposition 4.17. The left adjoint L : Cat,, — Cat,, is precisely the localization of n-truncated

morphisms.

Proof. Tt is the localization at (00" < ©°"). sorry O

5 ((n-0.5)-connected,(n-0.5)-truncated) - categories

In the previous section we considered the orthogonal factorization systems generated by considering
all boundary inclusions 90? < ©9F1. up to n, or greater than n. Orthogonality is obtained by
codiagonal completion, which corresponded to adding the projection 904! — 0%, We could then
consider the generating set which contains the latter but not the former (codiagonal completing it
doesn’t do anything as this is an epi).

Let ©>7705 denote (90>™ < ©>") adjoined with the functor 9™ — O™, and define @=(0-5)

similarly.



Definition 5.1. A functor F': C — D in Cat, is (n-0.5)-connected (resp. (n-0.5)-truncated)
if f € orlp(@=("=05)) (resp. f € orlp(©>("=05)). A category C € Cat,, is (n-0.5)-connected
(resp. (n-0.5)-truncated) if the terminal map is (n — 0.5)-connected (resp. (n — 0.5)-truncated).

Proposition 5.2. A category C € Cat,, is (0.5)-connected iff it is a poset.

Proof. We know by 77 O
Proposition 5.3. A functor is (n — 0.5)-truncated iff it is (> n)-full and (> n)-faithful.

Proof. sorry O

Example 5.4. In Cat there exists an orthogonal factorization system whose right class is R =
(eso+ faithful). * A category is R-local A

6 walking n-isomorphisms

WARNING - THIS SECTION IS SKETCHY

Definition 6.1. The walking n-isomorphism is the n-category I"" obtained by inverting the top
morphism in ©¢. Also set I := 0.

Remark 6.2. Convince yourself that I" € cell(@gn).
Proposition 6.3. I"*! =~ @~
Proof. Contract the invertible arrow in I"t1. O

We will apply this identification without mention. That means that we are really in a weak

context for colimits.

Proposition 6.4. Let S C Caty be comprised by 00? — O' and 00! — @0 = I'. Then orlp(S)

consists of the pseudomonic functors, i.e. faithful, and full on isomorphisms.

Proof. Faithfulness correspond to lifts against the first functor, and unique lifts against the second

mean that that every isomorphism in the image comes from a unique isomorphism in the domain. [
Example 6.5. The terminal functor ©; is in orlp(S). A

Corollary 6.6. There exists a factorization system in Cat whose right class are the pseudomonic

functors.
Question 6.7. Is the right class the “pseudoepic” functors?

RLP against ©% < I" indicates that the n-morphisms are invertible. For n-categories,
RLP against I'" — x indicates that there are no non-trivial n-isomorphisms.

RLP against Sm < I" indicates that there are no non-trivial n-automorphisms

T don’t know what is the left class.



Example 6.8. A category is orthogonal to ©! — I! iff it is equivalent to a set. AN

Example 6.9. A functor of 1-categories is orthogonal to ©' « I' iff it is conservative and

iso-faithful, i.e. iso-reflecting and faithful on isomorphisms. A

Example 6.10. A 2-category is orthogonal to ©2 — I? iff it is biequivalent to a category. A
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