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In this note we study two kinds of localization and their intersection. While we focus on classical
category theory, the ideas and theorems generalize to higher categories (see ??).

1 Localizations

Recall the usual definition of localization of a category at a collection of morphisms.

Definition 1.1. A localization of a category C at a collection of morphisms W is a functor
L : C → C[W−1] sending W to isomorphisms in C[W−1] satisfying the following universal property:

• If F : C → D is a functor sending W to isomorphisms in D, then there exists a functor
F̃ : C[W−1]→ D and a natural isomorphism σ : F ∼= F̃ ◦ L. Given another such pair (F̃ ′, σ′),
there exists a unique natural isomorphism τ : F̃ ∼= F̃ ′ such that (τ.L) ◦ σ = σ′.

Example 1.2. The localization of C at all morphisms is the groupoid obtained by inverting every
morphism in C. 4

Notice that no conditions are imposed in W . The following alternative will prove itself useful.
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Definition 1.3. A localization of a category C at a collection of morphisms W is a functor
L : C → C[W−1] such that

1. よ(L) := L∗ : Cat(C[W−1], E)→ Cat(C, E) is fully faithful for every category C.

2. the essential image of L∗ consists of functors sending W to isomorphisms.

With this we can call a functor a localization without specifying W :

Definition 1.4. A functor F : C → D exhibits D as a localization of C if it is the localization of C
at some collection of morphisms.

Yet, there is always a canonical characterization of W :

Proposition 1.5. If F : C → D is a localization of C and W be the collection of morphisms f ∈ F
such that Ff is an isomorphism in D. Then D = C[W−1].

Proof. [DT: to-do] Suppose that F is a localization of C at W ′, so that W ′ ⊆ W and hence
C[W−1] → D. Then Definition 1.3 allows us to regard Cat(C[W−1],D) as a full subcategory of
Cat(C[W ′−1], E)

Corollary 1.6. A functor F : C → D is not a localization of C at W iff there exists a morphism
f ∈W such that Ff is not an isomorphism.

Saturation

Definition 1.7. A collection of morphisms S ⊆ C is saturated if there exists a functor F : C → D
such that S is precisely the class of morphisms sent to isomorphisms by F .

Proposition 1.8. If S ⊆ C is saturated, then it satisfies 2-out-of-3 and contains all isomorphisms.

Proof. This is very easy.

Proposition 1.9. A collection of morphisms S ⊆ C is saturated iff S is precisely the class of
morphisms inverted by C → C[S−1].

Proof. Assume that S is saturated via a functor F : C → D. Notice that

Definition 1.10. The saturation of a class of morphisms S ⊆ C is is precisely the collection S̄ of
morphisms sent to isomorphisms by L : C → C[S−1].

Proposition 1.11. The saturation of S ⊆ C is the smallest saturated class of morphisms containing
S.

Proof.

Proposition 1.12. C[S−1] ∼= C[S̄−1]

Proof. The converse is obvious.
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2 Reflective subcategories

Definition 2.1. A reflective subcategory of a category C is a full subcategory D whose inclusion
functor i : D ↪→ C has a left adjoint L.

Example 2.2. A category is gaunt if it has no non-trivial isomorphisms. The full subcategory
inclusion Gaunt ↪→ Cat admits a left adjoint that “gauntifies” a category by first identifying
isomorphic objects, then discarding the resulting automorphisms. 4

Example 2.3. The full subcategory inclusion Gpd ↪→ Cat admits a left adjoint which sends a
category to the groupoid obtained by inverting all morphisms. 4

Example 2.4. A category is contractible or (-2)-truncated if it is equivalent to a point. The full
subcategory inclusion Cat≤−2 ↪→ Cat admits a left adjoint which sends a category to the codiscrete
groupoid on its objects. 4

Lemma 2.5. Let i : D ↪→ C is a reflective subcategory with L a i. Then

1. the counit ε : Li⇒ 1C is a natural isomorphism.

2. whiskering L with the unit η : 1D ⇒ RL defines a natural isomorphism Lη : L ∼= LRL.

Proof. The action of i on morphisms factors by pulling back with the counit:

i : C(x, a) ε∗x−→ C(Lix, a) ∼= C(ix, ia).

The composite map is a bijection iff ε∗x is a bijection iff εx is a natural isomorphism, proving (1).
For (2), applying the inverse of εLx to the triangle equation εLx◦Lηx = 1Lx shows that Lηx = ε−1

Lx,
which is invertible.

Proposition 2.6. If i : D ↪→ C is a reflective subcategory, then the left adjoint L a i is a localization
of C at W := {f ∈ C : Lf is an isomorphism}.

Proof. Let F : C → E be a functor sending W to isomorphisms in E , and define the functor
F̃ := F ◦ i : D → E . Lemma 2.5 implies that the components of the unit are in W , so F takes them
to isomorphisms in E . It follows that Fη : F ∼= F̃ ◦ L is a natural isomorphism.

Next we show uniqueness up to unique natural isomorphism. If (F̂ , ρ : F̂L ∼= F ) is another
extension of F via L, then pasting with ε defines a natural isomorphism σ : F̂ ∼= Fi =: F̃ :

C E

D D

F

Li F̂ε
ρ
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The compatibility condition (σL)(Fη) = ρ follows from one of the triangle identities for L a i:

(σL)(Fη) =
C C E

D D
L

F

Li F̂
η

ε
ρ =

C E

D

F

L F̂
ρ = ρ.

The other triangle identity implies that any other compatible natural isomorphism σ′ : F̂ ∼= F̃ is
actually equal to σ:

C E

D D

F

i F̂σ′ =
C C E

D D D

i

F

L i F̂
η

ε σ′ =
C E

D D

F

Li F̂ε
ρ =: σ.

Remark 2.7. A reflective localization is an adjoint pair whose right adjoint is fully faithful, or
equivalently whose counit is invertible. Reflective subcategories are a particular case of reflective
localizations, and most results in this section also hold for reflective localizations. In fact, if
L : C � D : R is a reflective localization, then the essential image of R is a reflective subcategory of
C.

Remark 2.8. Reflective localizations can be regarded as a categorification of idempotent splitting.
First notice that if L a i is a reflective localization then the reflection T := iL is an idempotent
monad as the canonical multiplication iLiL iεL−−→ iL is an isomorphism T 2 ∼= T . Notice that this
definition makes sense in any 2-category. A weaker variant of idempotent splitting is used by
Douglas-Reutter to define semisimple 2-categories.

Non-examples

The following non-example is only a reflective subcategory in the 2-categorical sense.

Example 2.9. A flagged category is an essentially surjective functor F : G → C, where G is a
groupoid. An ordinary category C has a canonical flagging given by ob(C) ↪→ C, and this construction
determines a fully faithful functor Cat→ Catflagged. This functor is in fact a right adjoint, and the
reflective localization L : Catflagged → Cat sends F : G → C to the quotient category C/ ∼ defined
by the congruence relation generated by Ff ∼ 1s(f). 4

Question 2.10. Are univalent categories S-local with respect to a generating set S? (c.f. Corol-
lary 4.8) In other words, is the a small collection of functors of flagged categories S such that a
category is univalent iff it is orthogonal to S?

The following non-example is only a reflective subcategory in the ∞-sense.

Example 2.11. A space is n-truncated if its homotopy groups vanish above degree n. The inclusion
S≤n ↪→ S admits a left adjoint which sends a space to its truncation. 4
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Remark 2.12. The full subcateogry n-connected spaces is a coreflective subcategory, as the
inclusion S≥n ↪→ S admits a right adjoints.

3 Localization at local objects

In this section S is a collection of morphisms of a category C.

Definition 3.1. An object c ∈ C is S-local if f∗ : C(b, c)→ C(a, c) is a bijection for every f : a→ b

in S.

Remark 3.2. Being S-local means that extension problems against S have unique solutions:

x c

y

S3 ∃!

Example 3.3. Let J denote the walking isomorphism. The local objects of Cat with respect to
the terminal map ∃! : J → ∗ are precisely the gaunt categories. 4

Example 3.4. Let I denote the walking morphism. The local objects of Cat with respect to one
of the non-trivial inclusions I ↪→ J are precisely the groupoids. 4

Example 3.5. A category is contractible iff it is local with respect to the morphism ∂I ↪→ I. 4

Notation 3.6. A full subcategory inclusion i : D ↪→ C induces a restricted Yoneda embedding
よD : C → SetDop given by c 7→ C(c, i(−)). For the remainder of this section i denotes the full
subcategory inclusion i : CS ↪→ C of the S-local objects.

Definition 3.7. A morphism f : x → y is S-local if よD(f) is an isomorphism. In other words,
f∗ : C(y, c)→ C(x, c) is an isomorphism for every S-local object c.

Remark 3.8. The S-local equivalences is, by the definition, the saturation of S.

Lemma 3.9. The S-local morphisms always satisfy 2-out-of-3.

Proof. This is true for any saturated class of morphisms (Proposition 1.8).

Lemma 3.10. Suppose that S satisfies 2-out-of-3 and contains identities. If c and d are S-local
objects then f : c→ d is an S-local equivalence iff it is an isomorphism.

Proof. The following lift provides a left inverse to f :

c c

d

f
∃! g

Then g is still in S by 2-out-of-3. By the same argument it also has a left inverse, which must be
equal to f since left and right inverses must agree.
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Proposition 3.11. If S-local objects form a reflective subcategory i : CS ↪→ C, then the left adjoint
L a i is a localization of C at the S-local morphisms.

Proof. By Proposition 2.6, it suffices to show that the S-local morphisms are precisely those
morphisms inverted by L. Indeed, a morphism f : x→ y is S-local iff よCS

(f) = f∗ : C(y, i(c))→
C(x, i(c)) is a bijection for every c ∈ CS . Tranposing the last equation we obtain the equivalent
condition that Lf∗ : CS(Ly, c) → CS(Lx, i(c)) is a bijection for every c ∈ CS , but this is precisely
the Yoneda embedding applied to Lf ∈ CS , so it holds iff Lf is an isomorphism.

Proposition 3.12. If i : D ↪→ C is a reflective subcategory with D = C[S−1], then the essential
image of i is precisely the full subcategory of S-local objects.

Proof. This follows from Remark 2.7.

A common situation is that we have shown that L : C → D : i is a reflective localization which
we want to characterize as a reflection at some S-local objects i.e. we want to determine the essential
image of i.

Question 3.13. Let S be a class of morphisms such that CS ↪→ C is a reflective subcategory with left
adjoint L. Then CS = C[W−1] where W is the collection of morphisms that L sends to isomorphisms.
Definitely S ⊆W , so that there is a functor C[S−1]→ C[W−1] ∼= CS. When is this an equivalence?

4 Locally presentable categories

Proposition 4.1. Let C be a locally presentable category and D ↪→ C a full subcategory. Then the
following are equivalent:

1. D is the subcategory of S-local objects for set of morphisms.

2. D is a reflective subcategory closed under filtered colimits.

Proof. This is Theorem 1.39 in Adámek-Rosický.

Proposition 4.2. Let C be a category. The following are equivalent:

1. C is locally presentable.

2. C is the category of continuous presheaves on some category A.

3. C is a reflective category of SetA closed under filtered colimits for some category A.

4. C is the category of S-local objects of SetA for some category A.

5. C is the completion of a category A under filtered colimits.

Proof. This is Theorem 1.46 in Adámek-Rosický.
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[DT: something something sheaves]

Lemma 4.3. Let S be a collection of morphisms in a category C and consider the full subcategory
CS ↪→ C on the S-local objects. Then CS is closed under limits. If the domain and codomain of
morphisms in S are compact, then CS is also closed under filtered colimits.

Proof. Use the hypotheses to take the (co)limits out of the hom-sets and apply the definition of
S-local objects.

Corollary 4.4. Let C be a locally presentable category and let S be a collection of morphisms whose
domains and codomains are compact. Then CS ↪→ C is a reflective subcategory exhibiting C[S−1].

Proof. Combine Lemma 4.3 with Proposition 4.1.

Remark 4.5. The definitions and theorems of reflective localizations and locally presentable
categories parse verbatim to∞-categories. If a specific model desired, then the Bousfield localization
at a space of morphisms presents the category of S-local objects. This construction always exits
when the model structures are combinatorial, i.e. when the ∞-categories are presentable.

Codiagonal completion

Let C be a locally presentable category and D be a reflective subcategory, so that D ∼= C[W−1] for a
saturated class of morphisms W (combine Remark 3.8 with Proposition 3.11). What does it mean
to say that W is generated by a set I?

Then for any set of morphisms I ⊆ C we can produce a weak factorization systems via the small
object argument. Namely, the factorization system is (cell(I), rlp(I)), where cell(I) can equivalently
regarded as llp(rlp(I)) or the collection of I-cell complexes, i.e. the closure of I under pushouts,
transfinite composition, and retracts (in the arrow category Arr(C)).

On the other hand, we can turn rlp(I) into orlp(I) (unique lifts) by adding codiagonals, that is,
given any f : x→ y in I also add the morphism y t

x
y → y induced by the identities on y:

x y

y y t
x
y

b

f

f

δf

Then a morphism has unique lifts against I iff it has lifts against Ĩ.
Now run the small object argument to obtain the weak factorization system (cell(Ĩ), rlp(Ĩ)),

which is in fact an orthogonal factorization system.
Suppose that C has terminal objects. Then, by definition,

x ∈ C is I-local! x
∃!−→ ∗ ∈ rlp(Ĩ).
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Likewise a morphisms is an I-local equivalence iff it has the LLP against I-local objects. Hence
the I-local equivalences are precisely the (̃I)-cell complexes. By virtue of Remark 3.8, we have
shown the following.

Corollary 4.6. If I is a class of morphisms in a locally presentable category, then the following
sets are the same:

1. the I-local equivalences.

2. the Ĩ-cell complexes, where Ĩ is the codiagonal completion of I.

3. the saturation of I.

Now suppose that you show that a subcategory D ↪→ C is reflective, and moreover that the
objects of D are I-local morphisms with respect to a small class morphisms. Then you can describe
the S-local morphisms sharply: they are Ĩ-cell complexes.

Corollary 4.7. Let C be a locally presentable category and D ↪→ C be a reflective category of S-local
objects for a set of morphisms S ⊆ C. Suppose that the full subcategory Arr(C) on S is accessibly
embedded, i.e. closed under filtered colimits. Then D = C[S−1].

Proof. [DT: to-do, the point is that the additional condition should correspond to D
being closed under filtered colimits, as suggested by the first theorem in this section]

The following corollary is rephrasing Corollary 4.4 in the language of this subsection.

Corollary 4.8. Let C be a locally presentable category and suppose that W is a saturated set of
morphisms of the form W = cell(I) for a set of morphisms I. Then the full subcategory on I-local
objects presents C[W−1] ∼= C[I−1].

Example 4.9. Let C = Cat and I = {∂Θ1 ↪→ Θ1} (see Construction 5.4), so that a functor
is orthogonal to I iff it is fully faithful. The codiagonal completion Ĩ of I adds the morphism
∂Θ2 � Θ1, hence there is an orthogonal factorization system (cell(Ĩ), orlp(I)). This must be equal
to the factorization system (eso, f.f.), hence cell(Ĩ) is precisely the collection of fully faithful functors.

Moreover, a category is I-local iff it is a contractible groupoid, but we have seen in Example 3.5
that these form a reflective subcategory of Cat. Hence Cat≤−2 is precisely the localization of Cat
at ∂Θ1 ↪→ Θ1. 4

5 ω-categories

[DT: In progress for the ATCAT.]

Definition 5.1. A category is a fixed point for enrichment if V ∼= VCat.
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Proposition 5.2. The category Catω of ω-categories is a terminal object for the full subcategory
of SymMonCat at the fixed points for enrichment.

Proof. This is due to Goldthorpe.

Definition 5.3. The suspension of an ω-category C is the ω-category with two objects and whose
unique hom-ω-category is C.

Construction 5.4. The n-globe is the n-category Θn defines as the n-th iterated suspension of the
point ∗:

Θ0 = ∗ , Θ1 = ∗ ∗ Θ2 = ∗ ∗ . . .

The boundary of the n-globe is the (n− 1)-category ∂Θn obtained by discarding the top morphism:

∂Θ0 = ∅ , ∂Θ1 = ∗ ∗ ∂Θ2 = ∗ ∗ . . .

Proposition 5.5. Let S≥n denote the set of boundary inclusions ∂Θi ↪→ Θi for i ≥ n. Then an
ω-category is S≥n-local iff it is an n-category.

Corollary 5.6. The subcategory of n-categories forms a reflective subcategory of Catω.

Proof. [DT: to-do] Since Catω is locally presentable there is aS there is a reflection onto the
subcategory of S-local objects.

6 Localizing at a prime p

[DT: Just a sketch. The goal is to pinpoint results analogous to the yoga of p-local
spectra.]

Let R be a PID and Rp the localization of R away from a prime ideal p ⊂ R.

Rp =
{
r

s
: r ∈ R, s ∈ R \ p

}
Example 6.1. The ring Z(2) consists of rational numbers with odd denominator. 4

Proposition 6.2. The functor ModR → ModRp defined by M 7→ M ⊗R Rp is a reflective
localization.

Proof. [DT: to-do]

Proposition 3.12 implies that ModRp is equivalent to the category of S-local modules for some
class of homomorphisms S. We will give a sharper description of this subcategory.
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Proposition 6.3. An R-module M is S-local iff the endomorphism defined by m 7→ r ·m is invertible
for r /∈ p iff it is local with respect to the canonical homomorphism R→ Rp.

Proof.

Corollary 6.4. A finitely generated R-module is p-local iff it only has p-torsion, i.e. the endomor-
phism defined by m 7→ r ·m is nilpotent iff r ∈ p.

Example 6.5. A finite abelian group is p-local iff it only has no p-torsion. 4

Proposition 6.6. A homomorphism of R-modules is p-local iff it induces isomorphisms on the
p-torsion subgroups.

10


	Localizations
	Reflective subcategories
	Localization at local objects
	Locally presentable categories
	Omega-categories
	Localizing at a prime p

