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In this note we study two kinds of localization and their intersection. While we focus on classical

category theory, the ideas and theorems generalize to higher categories (see 77).

1 Localizations

Recall the usual definition of localization of a category at a collection of morphisms.

Definition 1.1. A localization of a category C at a collection of morphisms W is a functor

L :C — C[W~1] sending W to isomorphisms in C[W 1] satisfying the following universal property:

o If ' : C — D is a functor sending W to isomorphisms in D, then there exists a functor
F :C[W~'] — D and a natural isomorphism o : F = F o L. Given another such pair (F’, "),

there exists a unique natural isomorphism 7 : F = F’ such that (1.L) o 0 = 0.

Example 1.2. The localization of C at all morphisms is the groupoid obtained by inverting every

morphism in C. A

Notice that no conditions are imposed in W. The following alternative will prove itself useful.



Definition 1.3. A localization of a category C at a collection of morphisms W is a functor
L :C — C[W™1] such that

1. X(L):=L*:Cat(C[W1,&) — Cat(C, &) is fully faithful for every category C.
2. the essential image of L* consists of functors sending W to isomorphisms.
With this we can call a functor a localization without specifying W:

Definition 1.4. A functor F': C — D ezhibits D as a localization of C if it is the localization of C

at some collection of morphisms.
Yet, there is always a canonical characterization of W:

Proposition 1.5. If F: C — D is a localization of C and W be the collection of morphisms f € F
such that Ff is an isomorphism in D. Then D = C[W~1].

Proof. [DT: to-do] Suppose that F' is a localization of C at W', so that W/ C W and hence
C[W~' — D. Then Definition 1.3 allows us to regard Cat(C[W '], D) as a full subcategory of
Cat(C[W'~1],€) O

Corollary 1.6. A functor F : C — D is not a localization of C at W iff there exists a morphism
f €W such that F f is not an isomorphism.
Saturation

Definition 1.7. A collection of morphisms S C C is saturated if there exists a functor F': C — D

such that S is precisely the class of morphisms sent to isomorphisms by F'.
Proposition 1.8. If S C C is saturated, then it satisfies 2-out-of-3 and contains all isomorphisms.
Proof. This is very easy. O

Proposition 1.9. A collection of morphisms S C C is saturated iff S is precisely the class of
morphisms inverted by C — C[S™1].

Proof. Assume that S is saturated via a functor F': C — D. Notice that O

Definition 1.10. The saturation of a class of morphisms S C C is is precisely the collection S of

morphisms sent to isomorphisms by L : C — C[S™1].

Proposition 1.11. The saturation of S C C is the smallest saturated class of morphisms containing
S.
Proof. O

Proposition 1.12. C[S~!] = C[S7]

Proof. The converse is obvious. O



2 Reflective subcategories

Definition 2.1. A reflective subcategory of a category C is a full subcategory D whose inclusion

functor ¢ : D — C has a left adjoint L.

Example 2.2. A category is gaunt if it has no non-trivial isomorphisms. The full subcategory
inclusion Gaunt — Cat admits a left adjoint that “gauntifies” a category by first identifying

isomorphic objects, then discarding the resulting automorphisms. A

Example 2.3. The full subcategory inclusion Gpd — Cat admits a left adjoint which sends a
category to the groupoid obtained by inverting all morphisms. A

Example 2.4. A category is contractible or (-2)-truncated if it is equivalent to a point. The full
subcategory inclusion Cat<_o < Cat admits a left adjoint which sends a category to the codiscrete

groupoid on its objects. A
Lemma 2.5. Let i : D < C is a reflective subcategory with L 4 i. Then

1. the counit € : Lt = 1¢ is a natural isomorphism.

2. whiskering L with the unit n: 1p = RL defines a natural isomorphism Ln: L = LRL.

Proof. The action of 4 on morphisms factors by pulling back with the counit:
i:C(z,a) s, C(Liz,a) = C(iz,ia).

The composite map is a bijection iff €} is a bijection iff €, is a natural isomorphism, proving (1).
For (2), applying the inverse of 1, to the triangle equation e, 0Ln, = 11, shows that Ln, = EZ;,

which is invertible. O

Proposition 2.6. Ifi: D < C is a reflective subcategory, then the left adjoint L 1 i is a localization
of C at W:={f €C:Lf is an isomorphism}.

Proof. Let F' : C — £ be a functor sending W to isomorphisms in £, and define the functor
F:=Foi:D— &. Lemma 2.5 implies that the components of the unit are in W, so F' takes them
to isomorphisms in €. It follows that F'n: F' = F o L is a natural isomorphism.

Next we show uniqueness up to unique natural isomorphism. If (F P FL~F ) is another

extension of F' via L, then pasting with ¢ defines a natural isomorphism o : F~Fi=F:

c—Lr ¢



The compatibility condition (o L)(Fn) = p follows from one of the triangle identities for L - i

C———Cc Y ¢ c I ¢
(L) (Fn) =, 7 iﬂE\L p = L Py =
N J N /7 Y /
D D D

~ ~

The other triangle identity implies that any other compatible natural isomorphism o’ : F' = F is

actually equal to o:

c—t ¢ C c I ¢ c—t ¢
n A AN, R - 2N, g
7 / I - L ) 7 / 2 - 7 L 2 -
4 g /7 / € ¢ 4 7 7 v € Y /
D D D D D D D

Remark 2.7. A reflective localization is an adjoint pair whose right adjoint is fully faithful, or
equivalently whose counit is invertible. Reflective subcategories are a particular case of reflective
localizations, and most results in this section also hold for reflective localizations. In fact, if

L:C S D: R is a reflective localization, then the essential image of R is a reflective subcategory of

C.

Remark 2.8. Reflective localizations can be regarded as a categorification of idempotent splitting.
First notice that if L - 7 is a reflective localization then the reflection T := ¢L is an idempotent
monad as the canonical multiplication ¢LiL Lyl s an isomorphism 72 = T. Notice that this
definition makes sense in any 2-category. A weaker variant of idempotent splitting is used by

Douglas-Reutter to define semisimple 2-categories.

Non-examples

The following non-example is only a reflective subcategory in the 2-categorical sense.

Example 2.9. A flagged category is an essentially surjective functor F' : G — C, where G is a
groupoid. An ordinary category C has a canonical flagging given by ob(C) < C, and this construction
determines a fully faithful functor Cat — Catgaggeq. This functor is in fact a right adjoint, and the
reflective localization L : Catgaggea — Cat sends F': G — C to the quotient category C/ ~ defined
by the congruence relation generated by F'f ~ 1. A

Question 2.10. Are univalent categories S-local with respect to a generating set S? (c.f. Corol-
lary 4.8) In other words, is the a small collection of functors of flagged categories S such that a

category is univalent iff it is orthogonal to S?
The following non-example is only a reflective subcategory in the oco-sense.

Example 2.11. A space is n-truncated if its homotopy groups vanish above degree n. The inclusion

S<p — S admits a left adjoint which sends a space to its truncation. A



Remark 2.12. The full subcateogry n-connected spaces is a coreflective subcategory, as the

inclusion &>, — & admits a right adjoints.

3 Localization at local objects

In this section S is a collection of morphisms of a category C.

Definition 3.1. An object ¢ € C is S-local if f*: C(b,c) — C(a,c) is a bijection for every f :a — b
in S.

Remark 3.2. Being S-local means that extension problems against S have unique solutions:

Example 3.3. Let J denote the walking isomorphism. The local objects of Cat with respect to

the terminal map 3! : J — * are precisely the gaunt categories. A

Example 3.4. Let I denote the walking morphism. The local objects of Cat with respect to one

of the non-trivial inclusions I — J are precisely the groupoids. A
Example 3.5. A category is contractible iff it is local with respect to the morphism 07 — I. A

Notation 3.6. A full subcategory inclusion ¢ : D < C induces a restricted Yoneda embedding
Xp : C — SetP” given by ¢ — C(c,i(—)). For the remainder of this section i denotes the full
subcategory inclusion ¢ : Cg < C of the S-local objects.

Definition 3.7. A morphism f : x — y is S-local if Xp(f) is an isomorphism. In other words,

f*:C(y,c) = C(z,c) is an isomorphism for every S-local object c.
Remark 3.8. The S-local equivalences is, by the definition, the saturation of S.
Lemma 3.9. The S-local morphisms always satisfy 2-out-of-3.

Proof. This is true for any saturated class of morphisms (Proposition 1.8). O

Lemma 3.10. Suppose that S satisfies 2-out-of-8 and contains identities. If ¢ and d are S-local

objects then f:c— d is an S-local equivalence iff it is an isomorphism.

Proof. The following lift provides a left inverse to f:

Then g is still in .S by 2-out-of-3. By the same argument it also has a left inverse, which must be

equal to f since left and right inverses must agree. O



Proposition 3.11. If S-local objects form a reflective subcategory i : Cs — C, then the left adjoint

L i is a localization of C at the S-local morphisms.

Proof. By Proposition 2.6, it suffices to show that the S-local morphisms are precisely those
morphisms inverted by L. Indeed, a morphism f : z — y is S-local iff &¢ (f) = f*: C(y,i(c)) —
C(z,i(c)) is a bijection for every ¢ € Cg. Tranposing the last equation we obtain the equivalent
condition that Lf* : Cs(Ly,c) — Cs(Lx,i(c)) is a bijection for every ¢ € Cg, but this is precisely
the Yoneda embedding applied to Lf € Cg, so it holds iff Lf is an isomorphism. O

Proposition 3.12. Ifi: D < C is a reflective subcategory with D = C[S™1], then the essential
image of 1 is precisely the full subcategory of S-local objects.

Proof. This follows from Remark 2.7. ]

A common situation is that we have shown that L : C — D : i is a reflective localization which
we want to characterize as a reflection at some S-local objects i.e. we want to determine the essential

image of 1.

Question 3.13. Let S be a class of morphisms such that Cs — C is a reflective subcategory with left
adjoint L. Then Cs = C[W ] where W is the collection of morphisms that L sends to isomorphisms.
Definitely S C W, so that there is a functor C[S™] — C[W Y] = Cs. When is this an equivalence?

4 Locally presentable categories

Proposition 4.1. Let C be a locally presentable category and D — C a full subcategory. Then the

following are equivalent:

1. D is the subcategory of S-local objects for set of morphisms.

2. D is a reflective subcategory closed under filtered colimits.
Proof. This is Theorem 1.39 in Addmek-Rosicky. O
Proposition 4.2. Let C be a category. The following are equivalent:

1. C is locally presentable.

2. C 1is the category of continuous presheaves on some category A.

3. C is a reflective category of Set? closed under filtered colimits for some category A.

4. C is the category of S-local objects of Set™ for some category A.

5. C is the completion of a category A under filtered colimits.

Proof. This is Theorem 1.46 in Addmek-Rosicky. O



[DT: something something sheaves]

Lemma 4.3. Let S be a collection of morphisms in a category C and consider the full subcategory
Cs — C on the S-local objects. Then Cg is closed under limits. If the domain and codomain of

morphisms in S are compact, then Cg is also closed under filtered colimits.

Proof. Use the hypotheses to take the (co)limits out of the hom-sets and apply the definition of
S-local objects. O

Corollary 4.4. Let C be a locally presentable category and let S be a collection of morphisms whose

domains and codomains are compact. Then Cs — C is a reflective subcategory exhibiting C[S™1].
Proof. Combine Lemma 4.3 with Proposition 4.1. O

Remark 4.5. The definitions and theorems of reflective localizations and locally presentable
categories parse verbatim to co-categories. If a specific model desired, then the Bousfield localization
at a space of morphisms presents the category of S-local objects. This construction always exits

when the model structures are combinatorial, i.e. when the co-categories are presentable.

Codiagonal completion

Let C be a locally presentable category and D be a reflective subcategory, so that D = C[W 1] for a
saturated class of morphisms W (combine Remark 3.8 with Proposition 3.11). What does it mean
to say that W is generated by a set I7

Then for any set of morphisms I C C we can produce a weak factorization systems via the small
object argument. Namely, the factorization system is (cell(I),rlp(I)), where cell(I) can equivalently
regarded as llp(rlp(I)) or the collection of I-cell complexes, i.e. the closure of I under pushouts,
transfinite composition, and retracts (in the arrow category Arr(C)).

On the other hand, we can turn rlp(J) into orlp(I) (unique lifts) by adding codiagonals, that is,
given any f :x — y in I also add the morphism y lE' y — y induced by the identities on y:
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Then a morphism has unique lifts against I iff it has lifts against I.
Now run the small object argument to obtain the weak factorization system (cell(T), rlp(I)),
which is in fact an orthogonal factorization system.

Suppose that C has terminal objects. Then, by definition,

z € Cis Ilocal ew 7 25 % € rlp(7).



Likewise a morphisms is an I-local equivalence iff it has the LLP against I-local objects. Hence

the I-local equivalences are precisely the (I)-cell complexes. By virtue of Remark 3.8, we have

shown the following.

Corollary 4.6. If I is a class of morphisms in a locally presentable category, then the following

sets are the same:
1. the I-local equivalences.
2. the I-cell complexes, where I is the codiagonal completion of I.
3. the saturation of I.

Now suppose that you show that a subcategory D — C is reflective, and moreover that the
objects of D are I-local morphisms with respect to a small class morphisms. Then you can describe

the S-local morphisms sharply: they are I-cell complexes.

Corollary 4.7. Let C be a locally presentable category and D — C be a reflective category of S-local
objects for a set of morphisms S C C. Suppose that the full subcategory Arr(C) on S is accessibly
embedded, i.e. closed under filtered colimits. Then D = C[S™1].

Proof. [DT: to-do, the point is that the additional condition should correspond to D
being closed under filtered colimits, as suggested by the first theorem in this section]
O

The following corollary is rephrasing Corollary 4.4 in the language of this subsection.

Corollary 4.8. Let C be a locally presentable category and suppose that W is a saturated set of
morphisms of the form W = cell(I) for a set of morphisms I. Then the full subcategory on I-local
objects presents C[W 1] = C[I-1].

Example 4.9. Let C = Cat and I = {901 — O;} (see Construction 5.4), so that a functor
is orthogonal to [ iff it is fully faithful. The codiagonal completion I of I adds the morphism

009 — ©1, hence there is an orthogonal factorization system (cell(Z),orlp(7)). This must be equal
to the factorization system (eso, f.f.), hence cell(T) is precisely the collection of fully faithful functors.

Moreover, a category is I-local iff it is a contractible groupoid, but we have seen in Example 3.5
that these form a reflective subcategory of Cat. Hence Cat<_» is precisely the localization of Cat

at 8@1 — @1. A

5 w-categories

[DT: In progress for the ATCAT.]

Definition 5.1. A category is a fized point for enrichment if ¥V = VCat.



Proposition 5.2. The category Cat,, of w-categories is a terminal object for the full subcategory

of SymMonCat at the fized points for enrichment.
Proof. This is due to Goldthorpe. O

Definition 5.3. The suspension of an w-category C is the w-category with two objects and whose

unique hom-w-category is C.

Construction 5.4. The n-globe is the n-category ©,, defines as the n-th iterated suspension of the

point *:

©p = *, O = x —— % Oy = % *

&

The boundary of the n-globe is the (n — 1)-category 00,, obtained by discarding the top morphism:

TN
00p= 0, 001 = * * 00y = x* *
N "

Proposition 5.5. Let S>, denote the set of boundary inclusions 00; — ©; for i > n. Then an

w-category is S>p-local iff it is an n-category.
Corollary 5.6. The subcategory of n-categories forms a reflective subcategory of Cat,,.

Proof. [DT: to-do| Since Cat,, is locally presentable there is aS there is a reflection onto the
subcategory of S-local objects. O

6 Localizing at a prime p

[DT: Just a sketch. The goal is to pinpoint results analogous to the yoga of p-local
spectra.]
Let R be a PID and R, the localization of R away from a prime ideal p C R.

Rp:{r:reR,seR\p}
S
Example 6.1. The ring Z ) consists of rational numbers with odd denominator. A

Proposition 6.2. The functor Modg — Modg, defined by M — M ®pgr Ry is a reflective

localization.

Proof. [DT: to-do]
O

Proposition 3.12 implies that Modg, is equivalent to the category of S-local modules for some

class of homomorphisms S. We will give a sharper description of this subcategory.



Proposition 6.3. An R-module M is S-local iff the endomorphism defined by m +— r-m is invertible
for v & p iff it is local with respect to the canonical homomorphism R — R,.

Proof. ]

Corollary 6.4. A finitely generated R-module is p-local iff it only has p-torsion, i.e. the endomor-
phism defined by m — r - m is nilpotent iff r € p.

Example 6.5. A finite abelian group is p-local iff it only has no p-torsion. A

Proposition 6.6. A homomorphism of R-modules is p-local iff it induces isomorphisms on the

p-torsion subgroups.
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